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1 Introduction and Assumptions
We aim to implement a trading strategy using volatility arbitrage. Volatility arbi-
trage involves exploiting differences between the implied volatility of options and the
expected future volatility. We use statistical models to predict future volatility and
then compare these predictions with the implied volatility (VIX) reflected in current
option prices. The forecasted volatility is annualized and compared with the VIX in-
dex, a popular measure of the stock market’s expectation of volatility based on S&P
500 index options. A dynamic trading rule is applied: The strategy takes a ‘Long’
position if the forecasted error (the difference between the EGARCH forecast and
the VIX) is greater than a certain threshold, and a ’Short’ position otherwise.s The
threshold is determined by the standard deviation of the forecast errors multiplied
by a threshold factor. This strategy hinges on the belief that the options market
might misprice the true level of futurep volatility.

The following foundational assumptions are posited:

• Market Efficiency. Markets are presumed efficient, incorporating all available
information into asset prices. This assumption is pivotal as it predicates the iden-
tification of volatility arbitrage opportunities on anomalies rather than systemic
mispricing.

• Liquidity. Assets and options targeted are assumed to exhibit high liquidity,
ensuring minimal market impact on entry and exit of positions, and maintaining
narrow bid-ask spreads.

• No Arbitrage. It is posited that under normal market conditions, arbitrage op-
portunities do not present risk-free profits. This aligns with the theoretical fair
pricing of options and derivatives.

• Volatility Predictability. The strategy presupposes the statistical predictability
of future market volatility, essential for comparing forecasted volatility against
current implied volatility.

• Rational Market Participants. Market participants are assumed rational, bas-
ing decisions on available data and logical assessments. This underpins the pre-
dictability of market responses to stimuli.

• Stable Regulatory Environment. The strategy assumes a consistent regulatory
framework, essential for the stability and predictability of market operations and
trading conditions.
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These assumptions form the theoretical bedrock for our strategy’s design, implemen-
tation, and anticipated performance within the financial market context.

2 Data Collection and Preprocessing
Utilizing the ‘yfinance’ library, we download the S&P 500 Index data, denoted by
‘ĜSPC‘, for a specified time period. This library facilitates direct access to Yahoo
Finance’s historical data, focusing on the daily closing prices. Post data acquisition,
we preprocess it to calculate log returns, an essential step for financial analyses
involving volatility. The log returns are computed as the natural logarithm of the
ratio of consecutive day’s closing prices. This computation not only aligns with
models that assume normally distributed returns, like GARCH, but also is crucial
for meaningful comparisons with volatility measures such as the VIX, ensuring a
continuous and stabilized variance of returns over time.

Specifically, we have VIX designed to be an estimate of the realized volatility (RV)
over the next 30 trading days and is approximately given by,

VIX ≈ 100 × σ̂, where σ̂2 ≈ EQ

[
RV 2

]
.

The definition of realized volatility RV over the next n trading steps is given by,

RV := annualized standard deviation of {R0, . . . , Rn−1}

where Ri = ln
(
Sti+1/Sti

)
is the log-return of asset from day ti to day ti+1. Then,

∆t := ti+1 − ti corresponds to the length of one step, and the annualized variance
of each Ri is equal to EQ [var (Ri)] /∆t, where the expected value is taken under the
risk-neutral probability. Accordingly, we define σ̂2 by,

σ̂2 = 1
n

n−1∑
i=0

EQ [var (Ri)]
∆t

.

Above formulae for VIX and σ̂2 are formal and motivates the precise definition given
by CBOE.

We divide the S&P 500 log returns data into distinct sets for robust model train-
ing and evaluation: 60% is used as the training set to develop and calibrate the
model, the subsequent 20% forms the validation set for model tuning and interme-
diate evaluation, and the final 20% serves as the test set. This partition ensures a
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comprehensive approach to model training, allows for effective hyperparameter tun-
ing during validation, and provides a reliable assessment of the model’s predictive
performance on unseen data, thus ensuring both accuracy and generalizability in
real-world scenarios.

3 Model Selection

3.1 GARCH-type models
In the development of our strategy, Generalized Autoregressive Conditional Het-
eroskedasticity (GARCH) models, encompassing GARCH, EGARCH, T-GARCH,
and IGARCH, stand out as our initial choice for volatility forecasting. These models
are chosen for their advanced capability to capture the dynamic nature of financial
market volatility, including the persistence of volatility over time and its asymmet-
ric response to market news. This aligns well with our strategy’s need for precise
volatility forecasting and exploiting discrepancies between forecasted and implied
volatilities in option pricing.

• The typical GARCH model captures volatility clustering. Its variance equation is
typically expressed as

σ2
t = α0 +

p∑
i=1

αiϵ
2
t−i +

q∑
j=1

βjσ
2
t−j (1)

where p, q are the order of the model, and αi, βj are parameters.
GARCH is the baseline model for volatility forecasting and is effective in capturing
the clustering of volatility that is common in stock market returns.

• Exponential GARCH models (EGARCH) allow for asymmetric responses to shocks,
crucial for modeling leverage effects.

log(σ2
t ) = α0 +

p∑
i=1

αig(ϵt−i) +
q∑

j=1
βj log(σ2

t−j) (2)

where g(ϵ) captures the asymmetry in volatility.
It accounts for the asymmetric impact of positive and negative shocks (leverage
effect), which is often observed in equity markets.

• Threshold GARCH models (TGARCH) explicitly model the asymmetric impact
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of positive and negative returns.

σ2
t = α0 +

p∑
i=1

(αiϵ
2
t−i + γiϵ

2
t−iI[ϵt−i<0]) +

q∑
j=1

βjσ
2
t−j (3)

where I[·] denotes the indicator function for the threshold effect.
Like EGARCH, TGARCH models the asymmetric volatility response to positive
and negative returns, which can be important for stock indices.

• Integrated GARCH models (IGARCH) model persistent long-term volatility, in-
dicating enduring shocks.

σ2
t = α0 +

p∑
i=1

αiϵ
2
t−i + (1 −

p∑
i=1

αi −
q∑

j=1
βj)σ2

t−1 (4)

It is suitable for modeling long-term persistence in volatility, which can be a
feature of major stock indices.

3.2 Maximum Likelihood Estimation in Model Training
In the training of GARCH family models, Maximum Likelihood Estimation (MLE)
is employed to determine the optimal parameters of the model, which include α0,
α1, . . . , αp, and β1, . . . , βq. MLE is a statistical method used to estimate the model
parameters by maximizing the likelihood function, which represents the probability
of the observed data given the parameters.

For GARCH models, the likelihood function can be expressed in terms of the
conditional distribution of the returns given the past information. Assuming the
standardized residuals are normally distributed, the log-likelihood function for a
GARCH(p, q) model can be formulated as:

ln L(α, β) = −n

2 ln(2π) −
n∑

t=1
ln(σ2

t ) −
n∑

t=1

ϵ2
t

σ2
t

, (5)

where σ2
t is the conditional variance defined as in equation (1), and ϵt are the model

residuals.

The MLE process involves finding the set of parameters that maximize this log-
likelihood function. This optimization is typically performed using numerical tech-
niques since an analytical solution is not feasible for most GARCH-type models.
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3.3 Hyperparameter Tuning with MLE
Hyperparameter tuning leverages MLE to determine the order of the GARCH model,
denoted by p and q, and the asymmetric response parameter o for TGARCH mod-
els. The grid search performed over potential values of p, q, and o involves fitting
the GARCH model to the training data using MLE for each combination and eval-
uating the goodness of fit using the Akaike Information Criterion (AIC). The AIC
incorporates the maximized log-likelihood and penalizes the number of parameters,
balancing fit and complexity:

AIC = 2k − 2 ln(L(α̂, β̂)), (6)

where k is the number of parameters, and L(α̂, β̂) is the likelihood function evaluated
at the estimated parameters.

3.4 Model Validation and Testing
After selecting the best model based on AIC, the chosen model undergoes valida-
tion and testing. The rolling forecast methodology is applied to the validation and
test sets to predict future volatility. The predictive performance of the model is
quantitatively assessed using the RMSE on the out-of-sample test data:

RMSE =

√√√√ 1
N

N∑
t=1

(σ̂2
t − σ2

t,actual)2, (7)

where σ̂2
t is the forecasted conditional variance, and σ2

t,actual is the actual realized
variance. Models with lower RMSE values are considered better at capturing the
dynamics of volatility. Thus, the model training, selection, and validation process is
grounded on rigorous statistical estimation techniques, ensuring the reliability of the
volatility forecasts produced by the GARCH family models.

4 Strategy Formulation

4.1 Analysis of SPX/VIX Correlation
We first conducted a detailed analysis of the correlation between the S&P 500 Index
(SPX) and the Volatility Index (VIX) over various time frames, including 1 month, 3
months, 6 months, and 1 year. Using yfinance for data retrieval, we observed a typi-
cally negative correlation between SPX movements and expected market volatility as
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reflected by the VIX. This inverse relationship (see Figure 1) is particularly evident
in the short term and aligns with the market logic where rising volatility expecta-
tions coincide with market downturns. Since VIX is a measure of future volatility,
so when the market falls, there’s greater future volatility. If a market rises, usually
it’s assumed that future volatility is less.

Figure 1: SPX/VIX Correlation with respect to time

4.2 Realized Volatility of S&P 500
Further, we compared the VIX with the S&P 500’s realized volatility over different
periods. At a 1-month horizon, the VIX showed a consistent but not perfect predic-
tion of short-term volatility, with occasional significant deviations. Over 3 months,
the data suggested two distinct predictive trends, indicating the VIX’s less straight-
forward predictability in medium-term scenarios. Extending to a 1-year period, the
relationship deviated from linearity, suggesting the VIX’s reduced efficacy in fore-
casting long-term volatility. These findings highlight the complexity of volatility
forecasting and the importance of adapting strategies to different market conditions
and time horizons. See Figure 2.

4.3 Optimizing and Evaluating GARCH-Type Models
In this subsection, we focus on selecting the best parameters for various GARCH-type
models (GARCH, EGARCH, TGARCH, IGARCH) and analyzing their performance
using historical S&P 500 data.

Recall from §3 that the dataset is partitioned into training (60%), validation
(20%), and testing (20%) sets. This split allows us to rigorously tune the parameters
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(a) (b) (c)

Figure 2: VIX vs. Realized Volatility of S&P 500 for different time horizons

for each model on the validation set and then evaluate their performance on the
testing set. Using the ‘arch’ Python library, we employ a systematic approach to
determine the best parameters for each model type. This process involves iterating
over a range of parameter values and selecting the combination that yields the lowest
Akaike Information Criterion (AIC) score, indicating the best fit to the data.

Figure 3: VIX Closing Prices over Time

For the GARCH and EGARCH models, we explore various combinations of the
order of ARCH (p) and GARCH (q) terms. For the TGARCH model, which accounts
for the asymmetric effects of shocks on volatility, we additionally iterate over the
order of asymmetry terms (o). The IGARCH model, a special case of the GARCH
model with the constraint that the sum of ARCH and GARCH coefficients equals
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one, is also included in our analysis. The results are shown as follows:
GARCH Best Params: (4, 0, 2)
EGARCH Best Params: (8, 0, 4)
TGARCH Best Params: (1, 4, 3)
IGARCH Best Params: 10

(a) (b)

(c) (d)

Figure 4: Prediction by Different GARCH-Type Models with Best Parameters

Once the best parameters are identified for each model, we fit these models to
the training data and perform rolling forecasts on the testing set. The Root Mean
Square Error (RMSE) is computed for each model’s forecasts against the actual data,
offering a quantitative measure of their predictive accuracy. Additionally, we report
the AIC and Bayesian Information Criterion (BIC) scores for each model, providing
further insights into their relative performance.

GARCH - RMSE: 0.01370315643627133 AIC: 14341.8662586546 BIC: 14380.739467117168
EGARCH - RMSE: 0.013672341973333101 AIC: 14469.60378647515 BIC: 14534.392467246096
TGARCH - RMSE: 0.013677621956685647 AIC: 13820.151611805783 BIC: 13884.940292576728
IGARCH - RMSE: 0.013671882180070151 AIC: 14028.242046537469 BIC: 14105.988463462603

The results demonstrate varying levels of performance across different models,
with each model capturing different aspects of the volatility dynamics in the SPX.
This comparative analysis not only sheds light on the effectiveness of these models
in volatility forecasting but also provides valuable insights into the complex behavior
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of financial market volatility. One should note that the EGARCH model has the
superior RMLE, AIC, and BIC performance.

4.4 Strategy Simulation with EGARCH Forecasts
In this section, we detail a dynamic trading strategy using EGARCH model forecasts
to exploit volatility differences between the model’s predictions and the actual market
volatility indicated by the VIX index. The strategy hinges on a rolling forecast
method, continuously updating the EGARCH model with the latest data and aligning
these forecasts with the VIX for direct comparison.

A key feature of our strategy is the implementation of a threshold factor within
our dynamic trading rule. This factor determines when to switch between ’Long’ and
’Short’ positions based on the standard deviation of the forecast errors (the difference
between EGARCH forecasts and the VIX). This threshold-based approach allows for
adaptive positioning in response to market volatility fluctuations.

Position sizes are dynamically adjusted according to the level of forecasted volatil-
ity, balancing potential returns with associated risks. The strategy’s effectiveness is
evaluated through both the total simulated PnL and visual analysis, where annu-
alized EGARCH forecasts are plotted against the VIX (Figure 5), offering insights
into the strategy’s performance in navigating market volatility.

Figure 5: Annualized EGARCH Forecasts compared to VIX Index
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5 Backtesting
Our backtesting process involves applying the strategy on a rolling window basis
to out-of-sample data, allowing us to evaluate its performance over time and under
varying market conditions. We also adjust for transaction costs and slippage to
ensure a more realistic assessment of the strategy’s profitability. Before start, we
introduce some performance metrics.

5.1 Performance Metrics
• Sharpe Ratio is essential for assessing the risk-adjusted return of the strategy.

It compares the strategy’s excess returns (over a risk-free rate) to its volatility,
offering a measure of return per unit of risk. A higher Sharpe Ratio indicates a
more favorable risk-reward balance.

• Alpha measures the strategy’s excess return over a benchmark (typically the mar-
ket index or a similar asset). It represents the value added by the strategy’s unique
approach, after accounting for market movements. Positive alpha indicates out-
performance relative to the benchmark.

• Beta Neutrality. This concept is crucial for strategies aiming to be market-neutral.
A beta-neutral strategy seeks to have a beta (a measure of sensitivity to market
movements) close to zero, implying that its performance is largely independent
of market swings. This is often a desired attribute in hedging strategies or those
aiming to minimize systemic risk.

• Transaction Costs. Including transaction costs in the analysis is vital for a realistic
assessment of a trading strategy. Costs such as brokerage fees, bid-ask spreads,
and slippage can significantly impact net returns, especially in strategies with
frequent trading.

5.2 Results and Strength/weakness Analysis
We backtested the above strategy using the last 20% of the data as the test set.

• The strategy yielded a beta of −3.43 , indicating an inverse relationship with the
market, and an alpha of 0.00% , suggesting returns in line with the risk-free rate
after adjusting for market exposure.
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• The strategy achieved an annualized return rate of 14.56% , showing strong per-
formance over the long term. The cumulative PnL is visualized in Figure 6.

• With a Sharpe Ratio of 0.4747 , the strategy’s risk-adjusted return is moderately
positive, indicating a decent return per unit of risk taken.

• The strategy’s performance was further evaluated considering transaction costs of
0.05 basis points per trade. This adjustment resulted in a total PnL with trans-
action costs being significantly lower, highlighting the impact of trading expenses
on net profitability.

Figure 6: Cumulative PnL over Time

Based on the results, we see that the strategy demonstrated a high annualized
return rate and the ability to capitalize on volatility discrepancies. Additionally,
the use of a dynamic trading rule based on EGARCH forecasts allowed for adaptive
positioning in varying market conditions.

However, the negative beta value indicates a significant inverse market correlation,
suggesting potential underperformance in bullish market conditions. The Sharpe
Ratio, while positive, suggests moderate efficiency in risk-adjusted terms, indicat-
ing room for improvement in managing volatility and drawdowns. The inclusion
of transaction costs noticeably reduced the strategy’s profitability, highlighting the
impact of trading expenses.
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