Quantile Regression
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Motivation

What the regression curve does is give
a grand summary for the averages of
the distributions corresponding to the
set of of x’s. We could go further and
compute several different regression
curves corresponding to the various
percentage points of the distributions
and thus get a more complete picture
of the set.

—Mosteller and Tukey (1977)
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Intuition

In OLS, we do not assume independency between predictors X and residual e.
(linearity; strict exogeneity; no multicollinearity; spherical errors; normality).

Is there a way to loosen the constraint such that the variable is independent of the
error in a certain manner?

To form this question in a better way, let X be a random variable in R*d, Y be a
random variable in R, and X, Y both have continuous distribution (density function
exists). Is there a function Q(X, t) such that Q is increasing in t for each X and
there exists another random variable U independent from X following a uniform
distribution on [0,1] that makes Y = Q(X, U)?



Univariate Quantile

Given a real-valued random variable X, and its cumulative distribution function F, we
will define the 1th quantile of X as:

Qx (1) = FEI(T) = inf{z|F(x) > 7}
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Quantile Loss Function
Optimization problem of quantile loss function:
o, = argminE[p, (Y — a)]
o
pr(u) =7Tut + (1 —7)u", ut = max(u,0), v~ = max(—wu,0)

Sketch of the proof (using FOC):

Solve  E[Lp. (Y —a)] = 0.
Substitute with

E[ (¥ — )] = E[1{Y < a}] = Fy(a)



Conditional Quantile

Similarly, the conditional 1 th quantile solves:

a,(z) = argminE[p,. (Y — a)| X = z]
Assume linear formation, we have the following parametric form

B,(z) = argminE[p, (Y — XTB)|X = z]
B

Qyx (7|z) = inf{y : F(y) > 7|X =z}

= Zﬂk(T)fEk =B(r)'z
P



Back to Intuition — Specified Quantile Regression

Is there a function Q(X, t) such that Q is increasing in t for each X and there exists
another random variable U independent from X following a uniform distribution on
[0,1] that makes Y = Q(X, U)? The goal is to correctly define U.

Define U such that
Y = Qyx(U]|X)

Recall the inverse relationship
=P(Y < Qyx(tlz) | X =2)
=1
Hence, we obtain a uniform distribution fully independent from X.

U = Fyx(Y]X) = 0,1]



Regression Quantiles Computation: Linear Programming

For every linear programming problem (the primal problem), there exists an
associated LP problem called its dual problem (there’s complementary slackness.)

Primal Problem

Primal: 7 ———

maximize clz 61

subject to Az <b
z>0

Dual: :

minimize by

subject to ATy > ¢
y=>0




Linear Programming - Continued

The goal is to minimize
Elp-(Y — X' )]

We consider its sample version for the ease of coding

argmin » _ p.(y; — x; B)

BERF =1

Let u; = (y; —z; )t and v; = (y; — z; B)~ with us,v; > 0. u; —v; = y; — ] B.

n n
argmin Y p, (4 — 77 B) = argmin 3 pr (us — v;)
BERF T BERF T

n
= arg minz Tu; + (1 — 7)v;
BeERF T

= argminfu' 17 4+ v 1(1 — 7)]
BERFK



Primal - Dual Problem

Original: argmin[u' 17 +v " 1(1 — 7)]
BERF

st.y—X'"B—(u—v)=0, (u,v>0)
After Lots of Linear Algebra...

Primal: Let w = (8,u,v), c=(0,17,1(1 - 7)), Z = (X", I,,—1I,)

arg min(w ' c)
weERk

st.Zw =y

Dual: arg max(y ' z)

st. Xz=(1-71)X1,z€[0,1]"



Another Way

Dual —

Primal —

E[rP + (1 - 7)N]

st. P-N=Y-X'"8

where P= (Y —X"B)" and N = (Y —X"8)~ cCall - Put Parity
We may rewrite and eliminate N to get the dual problem

PnzliOI}BIE [P+(1- T)XTB]

st. P+ X'B>Y
Add a slack variable V' to the dual problem

Pnzli(]x}ﬁ]E[P + (1 —=7)X7 8] + I‘Illg%([V(Y ~P=XT8)

We may rewrite it by combining the min max
s _ T _p_xT
Vb = Juin I‘Illg%(E[P +1-7X'B+V(Y-P-X'pB)]
Using the minimax inequality we have Vp > Vp with
_ : _ T _ p_xT
Vp = o i EP+(1-7)X B+V(Y —-P—-X B
=maxE[VY]+ min E[1-V)P+(1-7-V)X"8+VY]
V>0 P>0,8
Then, we have obtained the primal problem
max E[YV]
V>0

st. V<1[P, >0
E[VX] = (1 - 7)E[X]
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Realization

Solve the LP problem

using Gurobi

500 1000 1500 2000
Income

3000

income = np.array(engle_data[ 'income'])
food = np.array(engle data[ 'food'])
housing = np.array(engle data[ 'housing'])
nbi=len(income)

X i k = np.array([np.ones(nbi),income]).T
Y = np.array([food,housing]).T

_,nbk = X i k.shape

gr_lp=grb.Model()

T =05

P gr_lp.addMvar (shape=nbi, name="P")
f = qr_lp.addMVar (shape=nbk, name="f(",

1b=-grb.GRB.INFINITY )

gr_lp.setObjective(np.ones(nbi) @ P + (1-t) * (np.ones(nbi) @ X i k) @ B, grb.GRB.MINIMIZE)

qr_lp.addConstr(P + X i k @ B >= food)
gr_lp.optimize()

Phat = gr_lp.getAttr('x')[-nbk:]
Phat

Gurobi Optimizer version 10.0.2 build v10.0.2rc0 (macé64[arm])

CPU model: Apple M1
Thread count: 8 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 235 rows, 237 columns and 705 nonzeros
Model fingerprint: 0x2elba335
Coefficient statistics:
Matrix range [le+00, 5e+03]
Objective range [1le+00, le+05]
Bounds range [0e+00, 0e+00]
RHS range [2e+02, 2e+03]
Presolve time: 0.00s
Presolved: 235 rows, 237 columns, 705 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 handle free variables Os
223 8.2118037e+04 0.000000e+00 0.000000e+00 Os

Solved in 223 iterations and 0.01 seconds (0.00 work units)
Optimal objective 8.211803659e+04

[81.48614818083601, 0.560174688436782]



Compare the beta values

In [17]: import statsmodels.api as sm
import statsmodels.formula.api as smf
import matplotlib.pyplot as plt
import scipy.sparse as spr

In [18]: T = 0.5
model = smf.quantreg('food ~ income', engle_data)
print(model.fit(g=t).summary())

QuantReg Regression Results

Dep. Variable: food Pseudo R-squared: 0.6205
Model: QuantReg Bandwidth: 64.51
Method: Least Squares Sparsity: 209.3
Date: Thu, 13 Jul 2023 No. Observations: 235
Time: 15:40:38 Df Residuals: 233
Df Model: 1

coef std err t P>|t]| [0.025 0.975]

Intercept 81.4862 14.635 5.568 0.000 52.652 110.321
income 0.5602 0.013 42.513 0.000 0.534 0.586

The condition number is large, 2.38e+03. This might indicate that there are
strong multicollinearity or other numerical problems.



Quantile Curve

The previous optimization problem has provided a way to compute [ for
pointwise values of T.

If we want to compute the whole curve that maps 1 to 3, the pointwise method
surely makes it an impossible task to finish...

The solution is not difficult, we “integrate” the infinite amount of optimization
problem into one!




Continued

Primal —

Dual —

Since we know that 3, solves the primal problem

max E[YV,]
Vr, €[0,1]

s.t. B[V, X] = (1 —7)E[X] [4]

for'ri:%, 0<i<n
Combine them by taking the sum of these problems,

E[YV.
Vnnlea[%{’llz ¥V

s.t. Vi, E[V,, X] = (1 - )E[X]

Taking the limit and we may convert the sum into an integral

1
max/ E[V,Y]dr
V()20 Jo

st.V(r)<1
E[V(r)X] = (1 - 7)E[X]

Similarly, its dual is constructed as

i /0 E[P(r) + (1 - ) X7 B(r))dr

st. P(t) > Y — XTB(7)



Monotonicity Constraint

Recall the definition of quantile as the inverse of a CDF function. There is a
natural constraint of monotonicity imposed on the dual (Koenker and Ng):

1
Lo /0 E [P(r) + (1 — )X B(r)] dr

st. P(T) = N(1) =Y — X B(7)
XTB(r)>X"B("),r>7

To solve it more easily, we consider its primal formulation (Carlier, Cher-
nozhukov and Galichon). Given that

V(r)=1{Y > X"B(7)},

We have X " 3(7) nondecreasing in 7 = V(7) nonincreasing.
The primal problem is

151(52))(/0 E[YV(r)]dr
st. 0<V(r) <1
E[V(r)X] = (1 - 7)E[X]
V)<V (), r>7




Sampled Version

Assume 11 = 0 < ... <7 <1 and let Z be a 1 x K row vector whose k-th
entry is E [Xj]. I is the dimension of Y. T is the size of the partition set of 7.
The sampled version of the previous primal problem is

1

maxy > V¥
1<i<1I
1<t<T
s.t. ‘/tz S 1
1 _
f Z Vi Xk = (1 - Tt) Tk
1<i<I

Vier1)i < Vi

Since 71 = 0, we have Vi; = 1 from the second constraint. The program becomes

rr‘l/ax% Z ViiY;

1<i<I
1<t

1
Fi Z Vie X = (1 —7) Tx
1<i<1I
Viiz2 Vo 2 ... 2 Vig_1)i 2 Vi 20



Next, let 7 be the T' x 1 row matrix with entries 7, and D be a T x T" matrix

defined as

1 0 0 --- 0 O

-1 1 0 8

D— 0 -1 1 0 0

0 0

; 0 -1 1 0

0 0 0 -11

After all th
te a t ese we have V' D > 0 if and only if

Vie2 Vai 2o 2 Vg 2 Ve 20 «— replace with D

matrix algebra...

We can write the sampled version into the following matrix form
LS o 4
7T
1
s.t. TVX = (lT = T)i'

VTDlr =1;
VID>0

We deflned a JOlnt Suppose T = #and U=D"1;,pu=D" (g —7) and p = 171 It is equiva-

lent to
maxU ' 7Y
probability density, s o =
iy = P
>0
Tr' Assume that the first entry of X is one for the ease of computation. If 7 satisfies

the constraints
I T
> mi=prand Y mi=p;
i=1 t=1

then 7 can be thought of as a joint probability on 7 and X given the marginal
probability constructed above.



1D Vector Quantile Regression

1D-VQR is equivalent to classical quantile regression by construction!

It can be rewritten into the one-dimensional vector quantile regression construc-
tion in the continuous case (Carlier, Chernozhukov and Galichon)

mﬁmx]Ew[UY]
s8.t. U~
(X,Y)~P
E[X | U] = E[X]

If we replace the mean-independence between X and U by independence
using conditional probability (scalar VQR, by Thm.3.3), we have

max E,[UY]
s.t.U ~p
(X,Y)~P
XUU
The solution to the latter problem is simply U = Fy|x(Y | X) and the nonpara-

metric conditional quantile representation is ¥ = F;llx(U | X). This conforms
with the classical quantile function we constructed above!



Computation

T
In [21]: D_t t = spr.diags([l, -1], [ 0, -1], shape=(nbt, nbt)) IIlaD(l]- 7T)/
s
U t 1 = np.linalg.inv(D_t_t.toarray()) @ np.ones( (nbt,1)) e
pmtl=Dt t.T @ (np.ones((nbt,1)) - 1t t_1) st X = QT
Al = spr.kron(spr.identity(nbt),X i k.T) ﬂ'T ]-T — p
A2 = spr.kron(np.array(np.repeat(l,nbt)),spr.identity(nbi))
A = spr.vstack([Al, A2]) T > O
rhs = np.concatenate( [(p t 1 * xbar 1 k).flatten(), np.ones(nbi)/nbi]) =

obj = np.kron(U_t 1, ¥ i 1).T

vqgr_lp=grb.Model ()

pi = vqr_lp.addMVar(shape=nbi*nbt, name="pi") .

vgr_lp.setParam( 'OutputFlag', False ) VeCtorlze

vgr_lp.setObjective( obj @ pi, grb.GRB.MAXIMIZE)

vgr_lp.addConstr(A @ pi == rhs) -

vgr lp.optimize() Ir® X [ vec(uz)
= 1Iel vec(m) = v

¢ t k = np.array(vqgr_lp.getAttr('pi'))[0:(nbt*nbk)].reshape((nbt,nbk))

fvar t k = D_t_t.toarray() @ ¢_t k

Bvar_t k[10,:]

Out[21]: |array([81.48614818, 0.56017469])




Vector Quantile Regression - General Case

In some fixed nonatomic probability space, (€2, F,P), given a random vector Z
with values in R* defined on this space, we will denote by .Z(Y") the law of Z.

We fix as a reference measure the uniform measure on the unit cube [0, 1]%

Hd = U ([0, l]d)

Given Y, an integrable R%valued random variable on (Q, F,P), Brenier’s The-
orem states that there exists a unique U ~ ug and a unique convex function
defined on [0, 1]¢ such that

Y = V().

The map Vi is called the Brenier’s map between py and Z(Y).
The vector quantile of Y is defined to be the Brenier’s map between ug; and

L(Y).

In one-dimensional space, the optimal transport map of Brenier is given by

Ve = @, where @ is the quantile of Y.| Monotonicity persists in both one-
dimensional and higher dimensions.




Brenier’s Continued

Theorem 2.1. (Brenier’s theorem) If Y is a squared-integrable random
vector valued in R?, there is a unique map of the form T = V¢ with ¢
convez on [0,1]% such that Vouu = Law(Y), this map is by definition the
vector quantile function of Y.

More topics to explore:
Regularized Vector Quantile Regression

From Quasi-specified QR to Unspecified QR
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