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1 Introduction

A quantile is defined to be the inverse of the cumulative distribution function.
It is an important characteristic of the random-variable distribution and pro-
vides us with statistical insights into the median, the extremes, etc. Classical
quantile regression, like other regression techniques, measures the dependence
of a response variable with respect to the explanatory variables by calculating
the conditional quantiles of the target variable. Professor Alfred Galichon and
his collaborators proposed the idea of ”Vector Quantile Regression” (VQR) to
extend the one-dimensional case to higher dimensions (i.e. when the response
variable can be multi-dimensinal). A vector quantile is defined to be the map
that minimizes the average squared distance between an outcome and its preim-
age. In the one-dimensional case, VQR produces close results relative to the
classical case. In this report, I will compare their similar yet different methods
of constructing regression, from mathematical deduction to coding with Python.

2 Loss Function – Start with OLS

To discuss regression, let’s start with the two most commonly seen: MSE (min-
imizing squared error) and MAE (minimizing absolute error).

µ = argmin
a

E(Y − a)2

m = argmin
a

E|Y − a|

When the penalty functions are different, we will get different results from the
regression. The MAE loss function is actually a special case in quantile regres-
sion (since median is the 50th quantile). For ordinary least squares, let’s first
verify that the mean minimizes the expected value E(Y − a)2:
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Proof. To find what minimizes the expected value, we take the derivative with
regard to a and set it to 0:

E
d

da
(Y − a)2 = E(−2Y + 2a)

= 2a− 2E(Y )

= 0

This gives a = E(Y ) = µ and proves the statement µ = argmin
a

E(Y − a)2

Next, we may construct the regression in the following way:
Substituting a with dependent variables multiplied by a coefficient β. The loss
function is ||y −Xβ||2. We need to solve the following problem:

β̂ = argmin
β

||y −Xβ||2

Proof. If we view Xβ̂ as a projection from y to X (i.e. the residual e = y−Xβ̂
is orthogonal to the vector space spanned by X), we may have the following
simple equation using linear algebra

XT (y −Xβ̂) = 0

which gives
XTXβ̂ = XT y

and thus
β̂ = (XTX)−1XT y

Notice that XTX should be invertible, which means that the matrix X has full
rank and there’s no perfect multicollinearity in the variables.

Let’s take this optimization perspective into quantile regression.

3 Classical Quantile Regression

3.1 Definition

3.1.1 Quantile

Given a real-valued random variable X, and its cumulative distribution function
F, we will define the τth quantile of X as:

QX(τ) = F−1
X (τ) = inf{x|F (x) ≥ τ}
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3.1.2 Quantile Loss Function

Like before, we would like to solve this optimization problem of quantile loss
function:

ατ = argmin
α

E[ρτ (Y − α)]

where ρτ (u) = τu+ + (1− τ)u−, u+ = max(u, 0), u− = max(−u, 0). It is called
the quantile loss function or the check function.
We are going to prove that the unconditional τth quantile is the solution.

Proof. To minimize E[ρτ (Y − α)], we look for the local minimum point using
the same method as above. Set the derivative be 0, E[ ddαρτ (Y − α)] = 0.

E[
d

dα
ρτ (Y − α)] = E[τ

d

dα
(Y − α)+ + (1− τ)

d

dα
(Y − α)−]

= E[−τ1{Y > α}+ (1− τ)1{Y < α}]
= −τ(1− E[1{Y < α}]) + (1− τ)E[1{Y < α}]
= 0

Hence,

τ(1− E[1{Y < α}]) = (1− τ)E[1{Y < α}]
τ(1− FY (α)) = (1− τ)FY (α)

FY (α) = τ

α = QY (τ)

Similarly, the conditional τth quantile solves

α̂τ (x) = argmin
α

E[ρτ (Y − α)|X = x]

To construct regression and compute the coefficients we have

β̂τ (x) = argmin
β

E[ρτ (Y −XTβ)|X = x]

QY |X(τ |x) = inf{y : F (y) ≥ τ |X = x}

3.1.3 Parametric Form

In parametric form we may write the quantile function as a linear formation

QY |X(τ |x) =
∑
k

βk(τ)xk = β(τ)Tx

(Parametric assumes a specific functional form for the relationship between the
predictor variables and the quantiles of the response variable.)
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3.2 Regression Construction: Linear Programming

3.2.1 Definition

To begin with, let’s briefly talk about how linear programming works. Linear
programming is a mathematical method used for optimizing a linear objective
function, subjected to linear equality and linear inequality constraints. A linear
programming problem can be represented in its standard form as:

maximize cTx

subject to Ax ≤ b

x ≥ 0

x is a vector of variables;
c is a vector of coefficients representing the objective function;
A is a matrix representing the constraints;
b is a vector representing the right-hand side of the constraints

For every linear programming problem (called the primal problem), there
exists an associated linear programming problem called its dual problem. The
dual is derived from the primal’s coefficients, and vice-versa. The process of
deriving the dual problem can offer insights into the structure of the original
problem and provide bounds on the optimal value of the primal problem.
Let’s say the primal problem is:

maximize cTx

subject to Ax ≤ b

x ≥ 0

The dual of the above problem is:

minimize bT y

subject to AT y ≥ c

y ≥ 0

3.2.2 Primal - Dual Formulation

The goal is to minimize
E[ρτ (Y −X⊤β)]

First, we would like to formulate the expectation into a linear programming
problem. For ease of computation, we consider its sample version.

argmin
β∈Rk

n∑
i=1

ρτ (yi − x⊤i β)
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Let ui = (yi− x⊤i β)
+ and vi = (yi− x⊤i β)

− with ui, vi ≥ 0. ui− vi = yi− x⊤i β.

argmin
β∈Rk

n∑
i=1

ρτ (yi − x⊤i β) = argmin
β∈Rk

n∑
i=1

ρτ (ui − vi)

= argmin
β∈Rk

n∑
i=1

τui + (1− τ)vi

= argmin
β∈Rk

[u⊤1τ + v⊤1(1− τ)]

Hence, we obtain a primal linear program

argmin
β∈Rk

[u⊤1τ + v⊤1(1− τ)]

s.t. y −X⊤β − (u− v) = 0, (u, v ≥ 0)

We can further put this into standard form.
Let w = (β, u, v), c = (0,1τ,1(1− τ)), Z = (X⊤, In,−In).

argmin
w∈Rk

(w⊤c)

s.t. Zw = y

Now that we have the primal problem in standard form, it is easy to find its
dual.

argmax
s

(y⊤s)

s.t. Z⊤s ≤ c

Note that the constraint implies that s ≤ 1τ and −s ≤ 1(1− τ), so 1(τ − 1) ≤
s ≤ 1τ . Thus this is equivalent to

argmax
s

(y⊤s)

s.t. Xs = 0, s ∈ [τ − 1, τ ]n

By change of variables s = z − (1− τ)1 we have

argmax
z

(y⊤z)

s.t. Xz = (1− τ)X1, z ∈ [0, 1]n
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3.2.3 Complementary Slackness

Def . Complementary slackness is a condition in linear programming which
states that for every constraint, either the constraint is tight (meaning it holds
with equality) or its corresponding dual variable (Lagrange multiplier) is zero.
In other words, if a constraint isn’t binding, its associated dual variable must
be zero, and vice versa. This principle bridges the gap between primal and dual
solutions, ensuring that when one has a positive slack (i.e., it’s not binding),
the other has zero influence on the objective.

In the above program, we can infer that if yi < x⊤i β, (the dual constraint
is slack), then zi = 0. If yi > x⊤i β, (the constraint is tight), then zi = 1.
Otherwise, yi = x⊤i β. These follow from the KKT conditions of complementary
slackness.

In Prof. Galichon’s work, he formulated the problem into

E[τP + (1− τ)N ]

s.t. P −N = Y −X⊤β

where P = (Y −X⊤β)+ and N = (Y −X⊤β)−

We may rewrite and eliminate N to get the dual problem

min
P≥0,β

E
[
P + (1− τ)X⊤β

]
s.t. P +X⊤β ≥ Y

Add a slack variable V to the dual problem to represent the constraint

min
P≥0,β

E[P + (1− τ)X⊤β] + max
V≥0

[V (Y − P −X⊤β)]

We may rewrite it by combining the min max

VD = min
P≥0,β

max
V≥0

E[P + (1− τ)X⊤β + V (Y − P −X⊤β)]

Using the minimax inequality we have VP ≥ VD with

VP = max
V≥0

min
P≥0,β

E[P + (1− τ)X⊤β + V (Y − P −X⊤β)]

= max
V≥0

E[V Y ] + min
P≥0,β

E[(1− V )P + (1− τ − V )X⊤β + V Y ]

Then, we have obtained the primal problem

max
V≥0

E[Y V ]

s.t. V ≤ 1 [Pt ≥ 0]

E[V X] = (1− τ)E[X]
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The complementary slackness condition gives:

V (Y − P −X⊤β) = 0

Let V (τ) and β(τ) be solutions to the above program.{
Y −X⊤β(τ) < 0 =⇒ V (τ) = 0
Y −X⊤β(τ) > 0 =⇒ V (τ) = 1

therefore
1
{
Y > X⊤β(τ)

}
≤ V (τ) ≤ 1

{
Y ≥ X⊤β(τ)

}
.

Assume (X,Y ) has a continuous distribution. Then for any β,Pr
(
Y −X⊤β = 0

)
=

0, and therefore one has almost surely V (τ) = 1
{
Y ≥ X⊤β(τ)

}
.

3.3 Quantile Curve Regression

The previous optimization problem has provided a way to compute β for point-
wise values of τ . To compute the whole curve τ → β , we construct quantile
curve regression.
Since we know that βτ solves the primal problem

max
Vτi

∈[0,1]
E[Y Vτi ]

s.t. E[VτiX] = (1− τi)E[X] [β]

for τi =
i
n , 0 ≤ i ≤ n

Combine them by taking the sum of these problems,

max
Vτi

∈[0,1]

∑
τi

E[Y Vτi]

s.t. ∀i, E[VτiX] = (1− τi)E[X]

Taking the limit and we may convert the sum into an integral

max
V (·)≥0

∫ 1

0

E[VτY ]dτ

s.t. V (τ) ≤ 1

E[V (τ)X] = (1− τ)E[X]

Similarly, its dual is constructed as

min
P≥0,β

∫ 1

0

E[P (τ) + (1− τ)XTβ(τ)]dτ

s.t. P (τ) ≥ Y −XTβ(τ)
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To better compute it with a computer program, we write its sample version.
Here, we observe as sample (Xi, Yi) for i ∈ {1, . . . , I}. We discretize the prob-
ability space [0, 1] into T points, τ1 = 0 < τ2 < . . . < τT ≤ 1. K is a matrix
representing samples of X. Let x̄ be the 1×K row vector whose k-th entry is∑

1≤i≤I Xij/I.

max
Vij≥0

1

I

∑
i,j

VijYj

s.t. Vij ≤ 1

1

I
(V K)ik = (1− τi)x̄k

In matrix terms, it is

max
V≥0

1

I
1⊤
T V Y

s.t. V ≤ 1

1

I
(V K) = (1− τ)x̄⊤

where 1⊤
T V Y is a compact way of representing the sum of the products VijYj .

After vectorization, v = vec(V ), it becomes

max
V≥0

1

I
(1T ⊗ V )⊤v

s.t. V ≤ 1

1

I
(IT ⊗X⊤)v = vec((1− τ)x̄⊤)

This version of the problem is more suitable for optimization solvers that typi-
cally operate on vectors.

3.4 Computing

We may implement the quantile regression by solving the LP problem. There
are many powerful linear programming solvers, like linprog in Matlab. Here,
we use Python Gurobi package to compute the linear programming task, with
an example dataset from Koenker, Roger and Kevin F. Hallock. “Quantile
Regression”. Journal of Economic Perspectives, Volume 15, Number 4, Fall
2001, Pages 143–156.

We would like to study the relationship between income and expenditures on
food for a sample of working class Belgian households in 1857 (the Engel data).
For the use of comparison, we set the quantile as 0.5, least absolute deviation
(LAD) model.
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Figure 1: LP Approach - Quantile Curve Regression

Let’s compare the result obtained above with the quantile regression package
from statsmodels.

Figure 2: statsmodels quantreg Approach

Notice that the coefficients (intercept and income) calculated by the two
methods are nearly the same with a high accuracy.
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4 One-Dimensional Vector Quantile Regression

4.1 Intuition

We know that in OLS regression, the error and random variable X are not in-
dependent since the residual is orthogonal with Xβ: Y = Xβ + ϵ. Is there a
way to loosen the constraint such that the variable is independent of the error
in a certain manner? To form this question in a better way, let X be a random
variable in Rd, Y a random variable in R, and X, Y both have continuous dis-
tribution (density function exists). Is there a function Q(X, t) such that Q is
increasing in t for each X and there exists another random variable U indepen-
dent from X following a uniform distribution on [0, 1] that makes Y = Q(X,U)?

First, we need to define the third random variable U . Since we know the
quantile map is a nondecreasing map, the function Q could likely relate to a
quantile function. We define U such that Y = QY |X(U |X). By definition of a
quantile function, we have U = FY |X(Y |X) = µ[0, 1] (the inverse relationship
between the quantile function and cumulative distribution function). Thus, we
have a random variable U correctly defined, which follows a uniform distribution
given certain X.

P(U < t | X = x) = P(FY |X(Y |x) < t | X = x)

= P(Y < QY |X(t|x) | X = x)

= t

Thus, we proved that U is uniformly distributed and independent from X.
To find the β such that

argmin
β

E[ρτ (Y − βTX)]

Still, we look for the local minimum by taking its derivative equal to 0.

E[Xρ′τ (Y − βTX)] = E[X(1(Y < βTτ X)− τ)] = 0

Assume X1 = 1, which means the first component of X 1. This normalization
makes it easy for interpretation and the transformation of regressors. Define U
such that Y = β(U)TX. Then, solve U as a function of Y,X. We plug this into
the above equation and use the fact that U is non-decreasing

E[X(1(β(U)TX < βTτ X)− τ)] = E[X(1(U ≤ τ)− τ)] = 0

What does this equation suggest about the independence between X and U?
Since the indicator function depends on the size of U , we have conditional
expectation from the previous eqaution

E[X|U ] = τE[X] = 0

Thus, E[X|U ] ∼ E[X]. We have deduced the mean independence between X
and U , which is weaker than independence since we only have the expectation.
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Like the monotonicity implied by the quantile function, this is also a natural
constraint for quantile regression construction. Note that this constraint can
be further loosened until full independence. “In both vector and scalar cases,
we have that, when the conditional quantile function is linear, the quasi- linear
representation coincides with the linear representation and U becomes fully in-
dependent of X.”

If we define Q(X,Uτ ) as the τ th quantile of the conditional distribution of
Y given X, then Uτ follows a uniform distribution on [0, 1]. This is also a uti-
lization of the Probability Integral Transform with U as the cumulative density
function map.

From the perspective of loss function, instead of minimizing the conditional
means as in OLS, quantile regression minimizes the absolute deviation through
conditional quantile. Through the formulation in 3.1, the major advantage of
quantile regression over ordinary least squares (OLS) regression is its ability to
handle non-constant variance (heteroskedasticity) and hence it tends to provide
a more complete view of possible causal relationships between variables.

4.2 Definition

4.2.1 Vector Quantile for General VQR

In some fixed nonatomic probability space, (Ω, F,P), given a random vector Z
with values in Rk defined on this space, we will denote by L (Y ) the law of Z.

We fix as a reference measure the uniform measure on the unit cube [0, 1]d

µd := U
(
[0, 1]d

)
Given Y , an integrable Rd-valued random variable on (Ω,F ,P), Brenier’s The-
orem states that there exists a unique U ∼ µd and a unique convex function
defined on [0, 1]d such that

Y = ∇φ(U).

The map ∇φ is called the Brenier’s map between µd and L (Y ).
The vector quantile of Y is defined to be the Brenier’s map between µd and
L (Y ).
In one-dimensional space, the optimal transport map of Brenier is given by
∇φ = Q, where Q is the quantile of Y . Monotonicity persists in both one-
dimensional and higher dimensions.

4.2.2 Conditional Vector Quantile

Form = L (X)-a.e. x ∈ RN , the vector conditional quantile of Y given X = x is
the Brenier’s map between µd := U

(
[0, 1]d

)
and ν(. | x) := L (Y | X = x). We

denote this well defined map as ∇φx where φx is a convex function on [0, 1]d.

We denote by νx the conditional probability of Y given X = x. Thus, ν =
m⊗ νx.
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4.3 Linear Programming

Recall the definition of quantile as the inverse of a CDF function. There is a
natural constraint of monotonicity imposed on the dual (Koenker and Ng):

min
P≥0,N≥0,β

∫ 1

0

E
[
P (τ) + (1− τ)X⊤β(τ)

]
dτ

s.t. P (τ)−N(τ) = Y −X⊤β(τ)

X⊤β(τ) ≥ X⊤β (τ ′) , τ ≥ τ ′

To solve it more easily, we consider its primal formulation (Carlier, Cher-
nozhukov and Galichon). Given that

V (τ) = 1
{
Y ≥ X⊤β(τ)

}
,

We have X⊤β(τ) nondecreasing in τ =⇒ V (τ) nonincreasing.
Consider the quantile curve regression discussed in the previous section. The
primal problem is

max
V (τ)

∫ 1

0

E[Y V (τ)]dτ

s.t. 0 ≤ V (τ) ≤ 1

E[V (τ)X] = (1− τ)E[X]

V (τ) ≤ V (τ ′) , τ ≥ τ ′

Assume τ1 = 0 < . . . < τT ≤ 1 and let x̄ be a 1 × K row vector whose k-th
entry is E [Xk]. I is the dimension of Y . T is the size of the partition set of τ .
The sampled version of the previous primal problem is

max
Vti≥0

1

I

∑
1≤i≤I
1≤t≤T

VtiYi

s.t. Vti ≤ 1

1

I

∑
1≤i≤I

VtiXik = (1− τt) x̄k

V(t+1)i ≤ Vti

Since τ1 = 0, we have V1i = 1 from the second constraint. The program becomes

max
Vti

1

I

∑
1≤i≤I
1≤t≤T

VtiYi

s.t. V1i = 1

1

I

∑
1≤i≤I

VtiXik = (1− τt) x̄k

V1i ≥ V2i ≥ . . . ≥ V(T−1)i ≥ VTi ≥ 0
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Next, let τ be the T × 1 row matrix with entries τk and D be a T × T matrix
defined as

D =



1 0 0 · · · 0 0

−1 1 0
. . .

...
...

0 −1 1
. . . 0 0

...
. . .

. . .
. . . 0 0

... 0 −1 1 0
0 0 0 −1 1


we have V ⊤D ≥ 0 if and only if

V1i ≥ V2i ≥ . . . ≥ V(T−1)i ≥ VTi ≥ 0

We can write the sampled version into the following matrix form

1

I
max
V

1⊤T V Y

s.t.
1

I
V X = (1T − τ) x̄

V ⊤D1T = 1I

V ⊤D ≥ 0

Suppose π = D⊤V
I and U = D−11I , µ = D⊤ (1T − τ) and p = 1I

I . It is equiva-
lent to

max
π

U⊤πY

s.t. πX = µx̄

π⊤1T = p

π ≥ 0

Assume that the first entry of X is one for the ease of computation. If π satisfies
the constraints

I∑
i=1

πti = µt and

T∑
t=1

πti = pi

then π can be thought of as a joint probability on τ and X given the marginal
probability constructed above.

max
π≥0

∑
1≤t≤T
1≤i≤I

πtiUtYi

s.t.
∑

1≤i≤I

πtiXik = µtx̄k∑
1≤t≤T

πti = pi
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To compute it with linear programming packages like Gurobi, we need to vector-
ize the matrices. Given vec(AπB) =

(
A⊗B⊤) vec(π), the constraint becomes(

IT ⊗X⊤

1⊤T ⊗ II

)
vec(π) =

(
vec(µx̄)

p

)
There are IT primal variables and KT + I constraints.
β is the vector of Lagrange multipliers of the constraint 1

IV X = (1T − τ) x̄ in
the former problem.
Let ψ be the vector of Lagrange multipliers of the constraint πX − µx̄ in the
latter problem. We have β = Dψ.

(πX − µx̄)⊤ψ = 0

thus (
1

I
D⊤V X −D⊤ (1T − τ) x̄

)⊤

ψ = 0

and therefore (
1

I
V X − (1T − τ) x̄

)⊤

Dψ = 0

It can be rewritten into the one-dimensional vector quantile regression construc-
tion in the continuous case (Carlier, Chernozhukov and Galichon)

max
π

Eπ[UY ]

s.t. U ∼ µ

(X,Y ) ∼ P

E[X | U ] = E[X]

This is an extension of the optimal transport problem of Monge-Kantorovich.
When X is restricted to the constant, it is an optimal transport problem.

If we replace the mean-independence between X and U by independence
using conditional probability (scalar VQR, by Thm.3.3), we have

max
π

Eπ[UY ]

s.t.U ∼ µ

(X,Y ) ∼ P

X ⊥⊥ U

The solution to the latter problem is simply U = FY |X(Y | X) and the nonpara-

metric conditional quantile representation is Y = F−1
Y |X(U | X). This conforms

with the classical quantile function we constructed above!
Dual form:

min
ψ,b

EP [ψ(X,Y )] + x̄⊤Eµ[b(U)]

s.t. ψ(x, y) + x⊤b(τ) ≥ τy, ∀x, y, τ
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The optimality of (ψ, b) gives us solution

ψ(x, y) = sup
τ∈[0,1]

{
τy − x⊤b(τ)

}
when b is differentiable, the conditional quantile function is linear

Y = X⊤β(U)

where (U,X, Y ) are the solutions to the primal problem and β(τ) = b′(τ).

When the components of Y are independent, we can run the scalar version
component by component. The general case will not be discussed here.

4.4 Computation

Figure 3: 1-D VQR computation

Using the formulation deduced above, we reached a coefficient result identical
to what we computed above. This helps to verify the equivalence between
classical quantile regression and one-dimensional vector quantile regression.
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